Dialectal Arabic to English Machine Translation: Pivoting through Modern Standard Arabic

نویسندگان

  • Wael Salloum
  • Nizar Habash
چکیده

Modern Standard Arabic (MSA) has a wealth of natural language processing (NLP) tools and resources. In comparison, resources for dialectal Arabic (DA), the unstandardized spoken varieties of Arabic, are still lacking. We present ELISSA, a machine translation (MT) system for DA to MSA. ELISSA employs a rule-based approach that relies on morphological analysis, transfer rules and dictionaries in addition to language models to produce MSA paraphrases of DA sentences. ELISSA can be employed as a general preprocessor for DA when using MSA NLP tools. A manual error analysis of ELISSA’s output shows that it produces correct MSA translations over 93% of the time. Using ELISSA to produce MSA versions of DA sentences as part of an MSA-pivoting DA-to-English MT solution, improves BLEU scores on multiple blind test sets between 0.6% and 1.4%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handling OOV Words in Dialectal Arabic to English Machine Translation

Dialects and standard forms of a language typically share a set of cognates that could bear the same meaning in both varieties or only be shared homographs but serve as faux amis. Moreover, there are words that are used exclusively in the dialect or the standard variety. Both phenomena, faux amis and exclusive vocabulary, are considered out of vocabulary (OOV) phenomena. In this paper, we prese...

متن کامل

Translating Dialectal Arabic to English

We present a dialectal Egyptian Arabic to English statistical machine translation system that leverages dialectal to Modern Standard Arabic (MSA) adaptation. In contrast to previous work, we first narrow down the gap between Egyptian and MSA by applying an automatic characterlevel transformational model that changes Egyptian to EG′, which looks similar to MSA. The transformations include morpho...

متن کامل

Dialectal to Standard Arabic Paraphrasing to Improve Arabic-English Statistical Machine Translation

This paper is about improving the quality of Arabic-English statistical machine translation (SMT) on dialectal Arabic text using morphological knowledge. We present a light-weight rule-based approach to producing Modern Standard Arabic (MSA) paraphrases of dialectal Arabic out-of-vocabulary (OOV) words and low frequency words. Our approach extends an existing MSA analyzer with a small number of...

متن کامل

Machine Translation of Arabic Dialects

Arabic Dialects present many challenges for machine translation, not least of which is the lack of data resources. We use crowdsourcing to cheaply and quickly build LevantineEnglish and Egyptian-English parallel corpora, consisting of 1.1M words and 380k words, respectively. The dialectal sentences are selected from a large corpus of Arabic web text, and translated using Amazon’s Mechanical Tur...

متن کامل

Unsupervised Word Segmentation Improves Dialectal Arabic to English Machine Translation

We demonstrate the feasibility of using unsupervised morphological segmentation for dialects of Arabic, which are poor in linguistics resources. Our experiments using a Qatari Arabic to English machine translation system show that unsupervised segmentation helps to improve the translation quality as compared to using no segmentation or to using ATB segmentation, which was especially designed fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013